
Mode densities of defect lines in two-dimensional Montroll-Potts lattices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys.: Condens. Matter 5 33

(http://iopscience.iop.org/0953-8984/5/1/006)

Download details:

IP Address: 171.66.16.159

The article was downloaded on 12/05/2010 at 12:46

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/5/1
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys: Condens. Matter 5 (1593) 33-56. Printed in the UK 

Mode densities of defect lines in two-dimensional 
Montroll-Potts lattices 

Max Wagner, Hilmar Dolderer and Christoff Reusch 
Institut Er lheoretische Physik, Univeni@t Stuttgart, Pfaffenwaldring 57, D-70W 
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A L s h c L  ?he inwtigation addresses the problem. to what exlent onedimensional 
defect structures in a uystalline sumunding'are able to affect the 1ow.frequenq 
vibrational-mode density. This problem is of importance for the thermodj"ics and the 
energy l r a n s p n  pmperiics ol disordered materials, Like gasses. Employing an extended 
Libhitz procedure, a Green function technique is used lo calculate lhe mode density of 
several prototypical linear defect suuctures within a two-dimensional reference Mice of 
Monuoll-Pots type. It is shown that, depending on the softness of the chosen defect 
lines, even at very low frequencies the power law of the mode density may Switch from 
the two-dimensional behaviour of the bulk ( p  w )  IO a form which is characteristic of 
onedimensional mcillatoly dynamin (p U mnstant). 

1. Introduction 

There is a marked difference between the specific heat and the thermal conductivity of 
non-crystalline dielectric solids and of aystalline ones, a fact which has been known 
since the seminal work of Zeller and Pohl [U] two decades ago. The measured 
glassy materials (SO,, GeO,, etc.) display common features (T law of the specific 
heat, TZ law and plateau in the heat conductivity, etc.), and a huge amount of 
later experimental data [3,6,8] hint at a universality of these features in non-metallic 

In contrast to the favourable experimental situation there are still some unresolved 
problems in the theoretical description of these phenomena. The tunnelling model 
of Anderson, Varxna and Halperin [I] and of Phillips [I71 was very successful in 
explaining the p e r  laws of the specific heat (TI) and the thermal conductivity (Tz)  
in the very low temperature region, although the microscopic nature of the tunnelling 
centres still remains unclear. 

In the temperature regime between 2 and 10K the specific heat is enhanced 
by a factor of two to three compared with the pure soundwave contribution. This 
difference has often been referred to as an excess specific heat and has been associated 
with some extra modes. Such modes have indeed been found recently by Buchenau 
er al [3, 41 and by means of inelastic neutron scattering experiments they have been 
attributed to chains of librating SiO, tetrahedra. The existence of these modes results 
in an enhanced density of states beyond the Debye value. 

On the other hand Krumhansl [7] has emphasized that non-Debye features 
can also be found in aystalline material of highly anisotropic nature, and he has 

glasses. 
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given some examples. This suggests that mode densities come into effect which 
are characteristic of lower dimensionality than three. Since a onedimensional 
aystal displays a linear temperature behaviour in the specific heat, and since the 
extra modes of Buchenau have been shown to be of harmonic nature, it seems 
desirable to investigate the question whether onedimensional defect structures in 
higherdimensional embeddings may produce a pronounced enhancement io the mode 
density. Tbis has led us to choose an analytically tractable model system to study the 
problem. 

This paper is divided into six sections. Section 2 is a short synopsis of the 
Green function formalism which is related to the original Lifshitz procedure [lo- 
121 and Its extension to extrinsic degrees of freedom [19,20]. A comprehensive 
presentation is found in an earlier paper by Wagner and Mougios [21]. The following 
section describes the two-dimensional Montroll-Pots lattice which is our undisturbed 
reference system and specifies the symmetry vectors of linear defect structures. Ln 
section 4 detailed calculations of intrinsic defects are made whereas in section 5 the 
effects of an extrinsic soft linear chain coupled to the bulk are discussed. A short 
summary of our results is given in the last section and the possibility of calculating 
more complex structures is considered. 

2. Preliminaries 

21. Densily of modes 

We restrict ourselves to a specification of the basic Green function formulae which we 
need to carry out the caalculations. A mmprehensive representation of the formalism 
is given in an earlier paper [21], and further background information is found in 
books of Dederichs and Zeiler [5], Bijttger [Z] and of Maradudin a a1 [13]. We 
consider a harmonic oscillatory system, characterized by the Hamiltonian 

m m,n. 

where X, are mass-reduced Cartesian coordinates (X, = &cm;zn). Then the 
eigenvectors ~ ( 6 )  = [q,,,(n)] of the dynamical matrix U,,,, constitute a complete 
orthonormal set and may be employed to define normal coordinates [13] 

7n 

which diagonalize the Hamiltonian (I), 

& h 

We introduce the Zubarev Green function (GF) [24] 
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the imaginary part of which is related to the density of states 

m 

If an oscillatory system may be conceived as a deviation from an 'undisturbed' one, 
the dynamics of which is known 

such b a t  the 'disturbance' only embodies a small number of coordinates, we 
may apply the LifShitz formalism [10,11] to calculate the disturbed GF from the 
undisturbed one, 

G(E)  = G(')(E) + 2xG(")(E)w[I -2?ig(')(E)w]-'G(')(E). (8) 

g(O)(E) represents that part of the undisturbed GF G(")(E) which pertains to 
the 'small space' of the matrix wmn. From (5) and (8) we deduce, after some 
manipulation, the deviation Ap(w)  = p(w) - p(")(w) of the mode densiry ffom the 
undisturbed expression, 

A p ( w )  = 2Im 'It {w [I -2xg(')(E)~]-'dg(~)(E)/dw (9) 

where E = w + ie and 

Tr{X} = E X , , , , , , .  
m 

For details we refer e.g. to the book of Dederichs and Zeller IS]. For 'intrinsic' 
disturbances, as given by expression (9, the effective disturbance matrix w,, does 
not depend on w, whence expression (9) may be simplified to 

A p ( w )  = - ( l / r ) (d /du) Im 'lY {In [I-2?ig(")(E)w]}  

Ap(w)  = -(l/x)(d/dw)Im In (det [I - 2 r g ( " ) ( E ) w ] } .  

(11) 

and by means of Tr{lnX} = In{detX} finally to 

(12) 

In a very similar manner we may also handle problems, in which the original reference 
system, characterized by the Hamiltonian If("), is supplemented by additional degrees 
of freedom. In this case the Lifs4itz procedure has to be modified somewhat [19]. 
We now write the Hamiltonian in the form 

(13) H = H(i) + H(e) + H(ie) 
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where 

7 tS 

H('+) = $ C ( X m K n , X ,  + X,K,,X,) Km, = Kvm (13) 

and we introduce the convention that the indices {m,n} are always confined to 
the 'intrinsic' degrees of freedom whereas {r, s} pertain to the 'extrinsic' ones. We 
introduce the 'intrinsic' and 'extrinsic' GFs respectively as 

mr 

where I(=) are the unit matrices in the two subspaces respectively. It should be 
noted that the matrix elements defined in (14a,b) are not those of the true GF in the 
two subspaces, 

G,,(E) f G%(E) G J E )  # G % ( E ) .  (15) 

Defining the decomposition 

(16) 0 - u(W) + ,(i) U L -  m n  m n  

it is found (see 1211) that an effective intrinsic disturbance may be introduced, 

such that again the GF pertaining to the intrinsic degrees of freedom may be written 
in the Lifshitz form (8) 

G,,(E) = Gg$(E)  

where 

The extrinsic elements G,,(E) of the true GF are found as 
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where G(')(E) is defined in (Ma) and, in view of the decomposition (16) the intrinsic 
of G(B(E) may also be written in the Llfshitz form (8) 

The total mode density is given by means of 

p(w) = p('vi)(w) + Ap(')(w) + p(')(w) (22) 

where. p(h')(w) stands for the undisturbed intrinsic density and 

22. Collective dktwbance coordinates 

The mal1 'space' of coordinates which characterizes the deviation of the disturbed 
Hamiltonian H from the undisturbed reference Hamiltonian H(') does not necessarily 
mvobe only a small number of Cartesian coordinates. Rather we assume that it is 
small in the Sense that it can be described by a small number r of generalized 
orthonormal coordinates {S(y)), 

N 

E % ( Y ) * u ? A Y ' ) , =  
m 

such that the disturbance (7) display; the form 

r 

where 6 is the projection of the disturbance matrix w onto the vector set {cr,(y), 
= I,. . . r), 
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We emphasize that the number of Cartesian coordinates involved may be much larger 
than the number r of effective 'disturbance coordinates' S(y). In a similar manner 
the GF dU)(E) may be projected onto this set [Zl], 

The Iifshitz expression (8) then can be shown to reduce to the form 

e ( E )  = @')(E) 4- ZK@~)(E)GJ [I - ~ T ~ ( ~ ) ( E ) G J ] - ~ & " ) ( E )  (30) 

The deviation A p ( w )  of the intrinsic mode density (12) from the. undisturbed value 
now reads 

A p ( w )  = - ( l / r ) (d/dw)Im In {der [ ~ - ~ K $ ~ ) ( E ) G ] } .  (32) 

In the case of extrinsic disturbances we also may introduce appropriate collective 
coordinates for the extrinsic degrees of freedom (SJe)),  as shown in section 5. For 
further details about the derivation of the preceding formulae we refer to an earlier 
paper 1211. 

3. Linear defect structures embedded in the twodimensional Montmll-Potts lattice 

3.1. Monuoll-Pous lanice 

This lattice is useful in model calculations and was introduced by Montroll and Pots 
[14-16]. In the MPL only nearest-neighbour interaction is taken account of and is 
described by longitudinal and transversal spring constans f. The Hamiltonian reads 

where m = m,e, t m,e,; m,, my = O,fl, .  . . i N/2.  e=, ey,are  Cartesian 
unit vectors and 6 = &e,,*eY. The index 1.1 covers the space direcuons z,y. The 
eigenvectors read 

qcL(kA) = [2(N t 1)2]-1/2eihc.m 6 P X  (34) 

with eigenfrequencies 

Q ( " ) ( A , , ~ C ~ , A ) ~  = &,{1- $ ( ~ ~ s k , + c o s k , ) }  = i2(")(k,)z+n(")(ky)2 

n(u)(k,)z = q f / ~ ) s i n ~ ( k , / 2 )  (36) 

(35) 

Qk = 8f/M d")(k , ) '= 4(f/M)sinZ(k,/2) 
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where X denotes the two frequency branches, RD the Debye frequency, and 

k= = [ 2 r / ( N  + l)] n, 

k, = [2* / (N  + l)] nY 
n, = O , f l ,  . . . , fN /2  
ny = O,fl, . . . , f N / 2 .  

(37) 
(38) 

The two frequency branches X are degenerate. A wn Hove singularity occurs at 

The undisturbed Green function for the MP Hamiltonian is of the form (see 
i2-H = n,/& 

equation (4)) 

and the (undisturbed) mode density reads (see equation (5)) 

with abbreviation 

2 s = 2 - 4(w/R,) 

where 

T I 2  
1 ~ ( r )  = J d 0  

V'I - r2sin2 0 .  0 

For low frequencies we find 

3.2. Inninsic defect arrays and symmety vectors 

We consider defect lines along the x-axis, such that translational invariance is 
not broken in this direction, whereas it is broken in the ydirection. By way 
of this symmetry breaking the wavevector component IC, remains a legitimate 
characterization of the irreducible group representation, whereas k, does not. 

We assume the spring constants to be disturbed in such a way that only I 
displacements of a single or a few neighbouring chains are involved and that the 
deviation from the ideal MPL is given by the Hamiltonian 
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In the examples given below the defect structure will always be chosen in such a way 
that there is mirror symmeby in the ydirection, so that the index 7. introduced in 
equation (U) to characterize the degrees of freedom involved in the defect, may be 
specified as 

RP 7 -, ( ~ , P , T )  P = g r =  1, ... 
where p is the panty With regard to reflection symmetry in the ydirection, and r 
is the multiplicity index of the respective representation. The vectors o,(7) (see 
equation (U)) then may be written in a factorized form, I 

where k, is defined in (37). Inserting expressions (47) and (49) in equation (28) with 
substitutions m - n a p ,  7 - { k = , p , r }  we find from (45) 

and the corresponding projected GF (31) in the 'small' space is given by 

which may be written as 

where 

E' = E' - R(')(k,)' E = w + ie (54) 

and where -R(o)(k,)2,-R(o)(k,)2 are given by equation (36). In view of equations (SO) 
and (51) we note tbat the effective rank of the computational problem is given by 
the multiplicity R, of the coordinates pertaining to a given parity p .  We further 
observe that the only GF involved in our calculation will be that of the linear chain 
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(see equation (53)). This GF has been studied intensively by many workers [13,22]. 
Specifically one finds 

z - - 1 - i / m  tor -1 < s < 1 
- 1 / m  for s > 1 

where 
s = 2-  S(w/n, )  2 - msk,. 

(554 

R r  our calculations we also need the equations 

l+s/JS"-1 for s < - l  

l-.s/= f o r s > l  
7rn; l-is/- f o r - l < s < l  (556) 

rnt, ~ s + i ( 1 - 2 s z ) / d i 3  f o r - I < s < l  . (5W 

2s + ( 2 S Z  - l ) / d z i  for s < -1 - 
l i  
lr 2s- (2s2-  l)/m for s > 1 

@i(E) = 

&$)(E) = 

Employing (47) and (48) we deduce from equation (32) the partial deviations 
Ap(k,,p;w) from the undisturbed mode density, 

Ap(k,,p;w) = - ( l / r ) - Im dw In det [ i -2ng(U) (k , , p ;E)Q(k , ,p ) ]  

and the total deviation reads 

(57) 
d 

ii 

AP(w)= ~ A P ( ~ , , P ; ~ )  = c N f l / d k z A d k , , p ; w ) .  x (58) 

It is practical in obtaining an overview of the behaviour of Ap(k,,p;w) to discuss 
also the function F( k, , p; U) given as 

F(k,,p;w) = - ( l /r)Im In det [ i - 2 x l ' ' ) ( k , , p ; E ) ~ ( k r , p ) ]  (59) 

k.,P P -1 

which by means of equation (57) is the parental function' of Ap( k, ,p;w),  

For a given k,-value the band of undisturbed modes lies between the limits 
A d k , ,  p ; w )  = (d/dulF(k,, PW). (601 

iIDh(k,) = +aDJ= (61) 

iImax(k,) = $ a D J m .  (62) 
Therefore, according to the theorem of Ledermann [9], the disturbed modes also lie 
in this region with the exception of a few singular (i.e. 'localized') modes, the number 
of which is not larger than two times the rank of the effective disturbance. These 
singular modes are found via the Lifshitz equation [10-12] 

det [ i - 2 r g ( " ) ( k 2 , p ; E ) 9 ( k , , p ) ]  = 0 (63) 
for w > n,(k,) or w < nmh(k,). 
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4 Examples 

4,I. Longitudinal defect line 

We first consider the specific case where the longitudinal springs in-the line my = 0 
of a MPL are disturbed, as depicted in figure I@), 

where 

Q = ( f  - f’)/f. (65) 
Then the defect line itself is the mirrorline for the coordinates involved in the 
disturbance, whence there is only parity p = g, which has multiplicity Rz = 1. 
Therefore the ’symmetry vector‘ b m v ( p ,  T )  introduced in (47) ncw reads 

for my = 0 
0 othenvise %+(g, = 

such that (see equations (50) etc) 

(67) 

(68) 

2 t ; (k , )  G , , (k , , g )  = -.lcr(f/M)(sin$k,) 

a(”(k,;E) E $)(k=,g; E) = GC)(E)  

where &$(E) is given by (5%) and E* = E2 - CL(u)(k,)2, E = w + ic. The 
Lifshitz equation (63) yields a single localized mode which appears below the band 
for a ‘soft’ disturbance, a > O ( f ’  < f), and above the band for a ‘hard‘ disturbance, 
a < O(f’  > f): 

wlw( k,) = LCL 2 - c o s k , 3 q / 1 + a 2 ( 1 - m k , ) Z  for f’5 f. (69) 

The solution of this equation is shown in figure 2 Inserting equations (67) and (68) 
in equation (57) we find 

AP(k,;W) = - ( l / ? r n ~ ) ( s a ( l - c o S k , ) r S )  

x {m [ I  - sz + d ( 1 -  cosk,)2]}-1 

- 2 ‘6 [W - %in(kz )I - { 6  [LJ - IC,)] + 6 [ LJ - %C(~ , ) l  (70) 
where 

x = W / Q D  (2 = 1 - ( f ’ / f )  s = 2 - 4 ( ~ / n D ) ~ - c O ~ k , .  (71) 
Figure 3 shows both the parental function F(k , ;w)  of Ap(k , , ;u)  (see equations (59) 
and (60)) and A p ( k , ; w )  itself. The global change of the mode density (58) is 
depicted in figure 4. In this particular case study it does not display peculiar structural 
features. For low frequencies it may be approximated by 

A p ( w )  = [2 (N  f l)/?rnD] C ~ ( W / ~ D )  U < (72) 
and this has the same power-law behaviour in w as the undisturbed mode density. 



mvre I (a) Linear defect strucfure in the hvo-dimensionai Montroli-F'otfs btlice 
(f, M )  The longitudinal spring mnstanfs along the I axis are changed to f'. (b) Linear 
chain of l r a ~ ~ e r s a l  spring defecfs in the WL ?he coupling consLanu between h e  atoms 
(m=,O) and (m,,I) a n  altered lo f'. (c) Two neighbouring chains of transversal 
spring defects with modified spring mnstant f ' between atoms (m=,l),(ms,O) and 
(m.,O), (mz,-l) in the two-dimensional WL (d) Extrinsic linear chain (spring mnstanl 
f., masser Me) mupled to an inui,nsic chain of the MPL (f, M). Extrinsic atom a t  site 
m, is coupled 10 intrinsic atom (m.,O) with transversal springs g in z direction. 

0.0 
IC 0 n/2 

Figure Z Localized bands due to a defecl line of longitudinal springs m the two- 
dimensional Montroll-Potu lattice. me full lines encase lhe mntinuum of band 
frequencier Dashed line: f'= 0, dotted l ine  f '  = O S  f ,  dashed-dotted line: f' = 2 f. 

42 Transvesal defect line 

We now consider the case of a defect Iine of the transversal springs between the 
atoms my = 0 and my = 1 (see figure l(b)), which initiates a defect Hamiltonian 
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*re 3. Chuge of the panial mode density, A p ( k = ; w ) ,  and parental function 
F(k,;u) caused by the softening of the longitudinal springs for a repr.zszntalive value 
d k. (= */3). Maximal dislurtance o = 1 L f '  = 0 means springs are mmplelely 
(Ut. 
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*=U/$ 

mgvm 4. bw-frequenq behaviour of the aces density of m o d s  of the twodimensional 
Montroll-PotIs latlice due Io a defect line of longiludinal springs. Full Line: f' = 0, 
dashed line: f' = 0.5 f, dolled line f ' = 0.9 f. 

and a = ( f  - f')/f. Now the number of coordinates involved in the disturbance 
is twice as large as in 4.1. There is a mirror line along the disturbed springs and 
each pair of coordinates {X(,,,,o),X(m=,,l} constitutes both an even and an odd 
representation of the mirror-symmetly group (Rs = 1, R, = 1). Therefore we may 
choose the symmetry vectors 

and 
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Figure 5. Change of the partial mode density, A p ( k , ; w ) ,  and parental funclion 
F(k,; w )  due to a linear chain of softened uansversal springs for a representative d u e  
d k , (=  x / lZ) .  Disturbed spring " a n t  f' = 0.lf. 

Inserting these in (50) and (51) we immediately observe that the even-pariry motion 
(p = g) does not produce a change in mode density. We thus only have the odd-mode 
contribution, for which we find the projections (see equations (50)-(52)) 

G(&) 3 G;n(k*,U) = -$an:, 
a("(k,;E) ~ d ? ( k , , q E )  = c'$(e) - G\:)(E) 

(76) 
(77) 

or, using equations ( S a )  and (556) 

1 - J(s - 1)/(s + 1) 

1 - JCS - I ) / ( s  + 1) 

s < -1  

z ~ B ( ' ) ( ~ , ; E )  = -- 1 + id(1- s)/(l+ s) -I < s < I (78) 
s > l  

Q:, * I  
where s is given by (56). In this case the Lifshitz equation (63) only yields a localized 
mode for a 'hard' disturbance, Le. for a < 0 (f' > f), 

Inserting equations (76) and (78) in equation (57) we have 
1 a(1- a)x 

AP(]C,;W) = JZIFnD G [ ( I - a ) * +  f a * ( 1 - s ) ]  

- 4dk)I 
- $S[W - n*dk,)I + 0 for 0 < a < 1 (SO) 

for LY < 0 

{ [w - Qnin(ICx)] for a = 1 

where I, a and s are given in (71). 
Figure 5 show the behaviour of the partial mode density deviation (80) and its 

parental function F(IC,;w) (see definition (59)) for a 'soft' disturbance line, f' < f. 
As physically expected the low frequency mode density increases, whereas at the 
upper band edge there is a decrease. Nevertheless. also in this defect arrangement 
the deviation of the global mode density (see definition (58)) does not display a 
qualitative change in the power law of W :  we still have A p ( w )  - W ,  or more 
specifically 
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W/n, 
FWrc d Low-frequenq behaviour of the excers density of modes 01 the MPL due 10 
an muinsic defect line 01 U a n s ~ ~ l  Spring% Dolled line: f '  = 0. lull line: f' = O. l f ,  
dashed line: f'=O.Sf. 

for a < 1 
for a = 1 . (81) 

iU behaviour of A d w l  is shown in firmre 6. It is worth no . .  I ig that for smaU 
a-values (ie. for f' + 0) the prefactor of w'm (81) turns very big and the power-law 
behaviour even at low frequencies switches from Ap ,., w to A p  - constant, which 
is indicative of one-dimensional harmonic dynamics. 

4.3. Double bawemal defect h e  
The defect arrangement depicted in figure I(c) is of particular interest, since it 
partially separates a full. chain of atoms from the surroundings. The Hamiltonian 
alteration now reads 

and a = (f - f') / f. The number of coordinates involved this time is 3( N + 1) 
and there is a mirror h e  along the chain my = 0 of atoms. Each triplet of atoms 
{X(wz=,-~) 7 X(m.,p)* X(m=,l))  constitutes respectively one odd-parity and two even- 
parity representations of the mirror symmetry group. But one of the even-parity 
representations is not effective in the dynamics, whence we have to consider only the 
two symmetry vectors 
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which generate the projections (see equations (50)-(52)) 

and 

G(k,,g) = Gll(kz,g) = -+a:, (87) 

2rGfk,,g;E) = -(8/3G!k) 

2 - s + (s - l)J(s - I)/($ + 1) 
2 - s - i(s - I)J( 1 - s)/(l + s) 

for s < -1 
for -1 < s < 1 x (88) { 2 - s +  (s- 1 ) J ( s -  l ) / (a  + I )  for s > I 

where s is given by (56). The Lifshitz equation (63) yields the odd-parity localized 
mode 

2 
(89) ,(U) ,os - - 2 - 4 (w&)(k=) /aD)  - cos(k,) = (1 + a ) / 2 n  

which only exists for a < 0 (f’ > f) and then appears above the quasi-continuous 
band of modes (s < -1). There is also an even-parity localized mode for a < 0 
above the band 

s@- lac- 2 - 4 ( u ~ [ $ ( k ~ ) / C 2 ~ )  -co6(lc,) 
2 

= (1/4a) ( 3 a Z +  2 a -  1 + 4(3a2+ 2 a  - 1)’- S a ( 1 - 3 ~ ~  + Sa2) . 1 
(90) 

Inserting respectively equations (8.5) and (86) and equations (87) and (88) in 
equation (57) we have 
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r-air _----.----.-- .._______________ . 
-. -.. ..._ ..__ 

1 
: 
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X -025, 
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> 
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IS 
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-20 

0.75 

2 0 3 .  

where I,O and s are given in (71). 
Figures 7 and 8 show the behaviour of the partial mode density deviation (91) and 

(92) and the respective parental function F ( k , ; w )  (see definition (59)) for a ‘soft’ 
disturbance. Again, as physically expected, the low-frequency mode density increases 
in both parity cases, but the effect is considerably more pronounced in the odd-parity 
case (figure 8). Fbr the global mode density (see definition (SS)), as depicted in 
figures 9 and 10, the very low-frequency behaviour is given by 
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5. Extrinsic chain 

We now consider an extrinsic harmonic chain of atoms (NN springs f,. masses Me), 
which is coupled to the intrinsic line of atoms {m,,my = 0} by transversal springs 
g, as illustrated in figure l(d). We decompose the total Hamiltonian in the form 

H = ~ ( 0  + ~ ( c )  + H(i4 H(i) = ~ ( 0 )  + w(i) e9 
where 6m,u, which means that 
atom number m, of the extrinsic chain is coupled to atom (m,,ny = 0) of the 
MPL, we may replace the indices { r , s }  in equations (13b,c) by {m,,n,} and wite 
for the several components of the Hamiltonian 

is given by equation (33). Since A',,,, - 

Xki, &: denote the extrinsic coordinates and momenta. We introduce the intrinsic 
symmetry vectors (see (47) and (48)) 

g ( m = , m v ) ( k )  = um.(kr) s m , , ~  (k,) = ( l / m ) e ' " m -  (99) 

and the extrinsic ones 

c@(k, )  = ( 1 / ~ ) d k Z m n -  = amz (k*) (100) 

which define the intrinsic symmeny coordinates (see equation (25)) 

and the extrinsic ones 

Q e ( k , ) = Z o $ ( k , ) * X 2 I  Pe(kz)= ~ & ~ ( I C , ) * P ~ ~ .  (102) 
m. mr 

These transmute the disturbances into the diagonalized form 
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and also diagonalize the extrinsic Hamiltonian 

= 2(g/M)Im ( { [ E 2 -  n(u,e)(k,)2](d/dw)g(U,i)(k,;E)} 

x {[E2 -fl("*e)(k,)*] [l -Z1(g/M)j(" . ' ) (k , ;E)]  - g / M e } - ' )  

(1 11) 

where G("+')(k,;E) = B(")(k,;E) is given by equation (68). 
extrinsic mode density (see (23)) we may write 

For the modified 
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where &(kr; E) follows from the projection of equation (20) 

x {E21(e)- [U(e) + 2 r K G ( ' ) ( E ) K ] ) - '  m.n. u n J k r )  

= ( I / 2 r )  {E'-  [ n ( c ) ( k , ) Z + 2 r ( g 2 / M M , ) g ( i ) ( k , ; E ) ] } - 1 .  (113) 

From the projection of (21) we get 

@(i)(k=;E) = @ ( u q k , ; E )  
x 1 + ( 2 x g / M ) ( 1  -2r")B'~.''(kr;E))- 1 9(0*"(k.;E)] 

[ 
(114) = B(O*')(kr; E ) / [ 1  - 27T(g/M)$"*i)(k,; E)] 

which we insert in (113) 

Ee(k,;E) = ( l /ZT)  [E'- d e ) ( k , ) ' -  2 r ( g z / M M e ) @ ' q k , ;  E) 
1 

x [ l -  2x("M)&5'0,"(k,; E ) ] - ' ]  - 

x {[E2 - n(O*"(kz)'][l - 2n(g/M)3("' ) (kz;E)1  - g / M , } - ' .  (115) 

= (1/27r)[l- 2 7 r ( g / M p q k r ;  E)] 

This yields for p(e) (kr;w) ,  if inserted in (112) 

p ( e ) ( ~ ~ = ; w )  = -(%/r) Im [I - 2 7 r ( g / ~ ) 0 ( " 4 ( k ~ ;  E)] 
-1 

U 
{IE2 - ncu.c)(k,)21[1 - 2 n ( g / h ~ ) B c u . i , ( k , ; E ) 1  - g l M , )  1. (116) 

Considering equations (111) and (116) we observe that they display the same 
denominator. In point of fact we may combine the two formulae to give the single 
equation 

Ap(' ) (k , ;w)  + p(e ) (kr ;w)  E A p ( k , ; w )  

= - ( l / r )  (d/dw) Im In {(E' - R(uie)(k,)2) 

x (1 - 2r(s/M)G'u*' ' (k , ;  E ) )  - ( s / M , ) )  (117) 

where Ap(k , ;w)  is to be understood as the deviation of the mode density from 
that of the ideal intrinsic MPL In this manner we have also succeeded in expressing 
the solution of the extrinsic coupling problem by means of a parental function (see 
equation (12)). 
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Again singular 'localized' modes occur outside the intrinsic band, which we found 
by searching the real poles of equation (115), 

(J- sl""(kz)2) (1 - 2 r ( g / M ) p y k z ; w ) )  - ( g / M , )  = 0. (118) 

her r ing  equation (68) for 2r#"J)(k,;w) = 2r3('J)(k,;w) we finally anive at 

Ap(')(kZ;w) + p(')(k,;w) Ap(kz ;w)  

- "a[w-n,i,(~z)l- 2 g s [ w - n , d ~ , ) l +  s[~--wlosl(~,)l 

{+h[W - wk2(~z)11 (119) 
where z = w/slD. The curved brackets around the 6 function of the second localized 
mode are a reminder of the fact, that this mode only exists if the frequency of the 
extrinsic chain for k, is not degenerate in the band modes. Figure 11 shows the bands 
of localized modes due to a soft extrinsic chain for several coupling strengths. Soft 
in this case means that for all values of k, the frequency of the chain is below the 
continuum of the undisturbed MPL The partial change of the mode density A p (  kz; U) 
and i& parental function F(k, ,w)  are depicted in figure 12 for an extrinsic chain 
with spring alnstant f, = 0.5f and masses Me = M .  

Figure 11. location of the singular bands due Io a soft extrinsic linear chain cfe = O S  f, 
Me = M) mupkd by g to the Iwodimensional Montroll-Potts lattice. The full lines 
indicate the edges of the mntinuum of band frequencies and the dispersion a w e  ol the 
free avins ic  chain. Dashed lines: g = 0. l f  dotted lines: g = O S f ,  dashed-dolted tine: 
g - Co. 

The global change A p ( w )  which is given by definition (58) again shows a linear 
dependence in the very low-frequency region 

The total behaviour of A p ( w )  is displayed in figure 13 for several coupling constants 
g and in figure 14 for several external masses Me. Although for very low frequencies 
the change of the mode density is given by equation (120), we see that there is a 
mnsition to onedimensional behaviour ( A p ( w )  - constant) which is shifted to very 
low frequencies with decreasing coupling constant g (or increasing masses Me). 

A d w )  = [ ( N  + l)/nDl[2(2 - P I . ) / r P I  (w/nD) e QO. (120) 
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k,=n/S x=w/Q, 

Rgurc 32, Change of Ihe panial mode dens$, Ap(k . ;w) ,  and parental funclion 
F(ks ;w)  due IO a soft exlrinsic chain (f. = O S  f, Me = M)  lor a repraenralive 
value of k, (= 7r/3). Coupling " a n t  g = f. 

x=o/o, 

FLgum W. Low-frequency behaviour 01 the acess densily 01 modes of the two- 
dimensional Monmll-Potu lattice due to an extrinsic linear chain (fc = f, Me = M )  
for several mupling strengths. Full line: 9 = 0.5 f, dashed line: g = 0.1 f, dotted tine: 
g = 0.05f. dashed-dotled line: g = 0.01 f. 

6. Summary and further perspectives 

The present investigation addresses the problem to what extent linear defect 
structures in crystalline systems are able to affect the low-frequency power law of 
the vibrational mode density. This question seems suggestive, since purely one- 
dimensional vibrational systems exhibit a constant mode density at w + 0, and thus 
the low-temperature specific heat would increase linearly with T. Glassy systems 
(SO,, GO,) also display such a behaviour, although it is not clear whether one- 
dimensional substructures in the material are responsible for it. For these system 
there is also neutron scattering evidence that the low-frequency mode density is 
strongly increased. Inspired by these findings we have calculated in detail the effects 
of linear defect strucrures softly embedded in a two-dimensional lattice. 

A Green function formalism is presented which is a kind of generalization of the 
original Lifshitz formalism. Whereas the Lifshitz procedure is restricted to a few 
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4.0 
-M,= 0.lM I 
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Figure 14 Low frequency behaviour of the excess density of modes of the WO- 
dimensional Montmll-Ports lattice due to an extrinsic linear chain (fe = f )  mupled 
with springs 9 = 0.1 f to the MPL Full line: Me = 0.1M. dashed line: M. = OSM, 
dotted tine: MO = 2.OM. dashed-dotted line: Me = 5.OM 

Cartesian disturbance coordinates, in our calculation new 'mesoscopic' coordinates 
and a new orthonomal basis are introduced in such a way that only a few of these 
mesoscopic coordinates are involved in the disturbance. By means of group theory 
the problems are reduced to low-rank subproblems: The formalism is extended to 
cases in which foreign degrees of freedom are coupled to the lattice. 

Archetypical models of line defects with translational symmetry in r-direction 
in the tw~dimensional Montroll-Potts lattice (MPL) are discussed. Fbr soft defects 
(f' < f )  it is found that all these structures generate a mode density, A p ( w )  - w, 
in the very-low-frequency region which equals the power law of the reference system 
WPL). However, as most dearly seen in the last [WO examples, there are new features. 
If there exists a softly coupled linear chain which may be intrinsic (by softening of 
transversal springs to neighbouring chains) or extrinsic (coupling with springs g to a 
chain of the WL), a transition of the additional density to onedimensional behaviour, 
A p ( w )  - constant, takes place. The frequency at which this transition occurs B 
shifted to lower and lower frequencies as the coupling becomes softer. 

We have not presented similar calculations for linear defect embeddings in three- 
dimensional lattices, although our formalism also applies there. These calculations 
require much more numerical effort and will be given later. Also the case of softly 
embedded librational chains will be given elsewhere. This latter case is of particular 
interesk since it represents a simulation of modes which are suggested by neutron 
scattering experiments [3]. A highly desirable future extension of the present work k 
the investigation of thermal transport properties in the presence of onedimensional 
defect structures, since from such investigations one may expect new insight with 
respect to the measured particular features in glassy material. 
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