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Absiract.  The investigation addresses the problem, to what extent cne-dimensional
defect structures in a crystalline surrounding are able to affect the low-frequency
vibrational-mode density. This problem is of importance for the thermedynamics and the
energy transport propertics of disordered materials, like glasses. Employing an extended
Lifshitz procedure, a Green function technique is used o calculate the mode density of
several prototypical linear defect structures within a two-dimensional reference iattice of
Moatroil-Potts type. It is shown that, depending on the softness of the chosen defect
lines, even at very low frequencies the power law of the mode density may switch from
the two-dimensional behaviour of the bulk (o ~ w) o a form which is characteristic of
one-dimensional oscillatory dynamics {p ~ constant).

1. Imtroduction

There is a marked difference between the specific heat and the thermal conductivity of
non-crystalline dielectric solids and of crystalline ones, a fact which has been known
since the seminal work of Zeller and Pohl {23] two decades ago. The measured
glassy materials (Si0,, GeQ,, etc.) display common features (T law of the specific
heat, T2 law and plateau in the heat conductivity, etc.), and a huge amount of
later experimental data [3, 6, 8] hint at a universality of these features in non-metallic
glasses.

In contrast to the favourable experimental situation there are still some unresolved
problems in the theoretical description of these phenomena. The tunnelling model
of Anderson, Varma and Halperin [1] and of Phillips [17] was very successful in
explaining the power laws of the specific heat (7"} and the thermal conductivity (7?)
in the very low temperature region, although the microscopic nature of the mnnelling
centres still remains unclear.

In the temperature regime between 2 and 10K the specific heat is enhanced
by a factor of two to three compared with the pure soundwave contribution. This
difference has often been referred to as an excess specific heat and has been associated
with some extra modes. Such modes have indeed been found recently by Buchenau
et al [3, 4] and by means of inelastic neutron scattering experiments they have been
attributed to chains of librating SiO, tetrahedra. The existence of these modes results
in an enhanced density of states beyond the Debye value.

On the other hand Krumhansl [7] has emphasized that nomn-Debye features
can also be found in crystalline material of highly anisotropic nature, and he has

0953-8984/93/010033+24807.50 (® 1993 JOP Publishing Ltd 33



34 M Hagner et al

given some examples. This supgests that mode densities come into effect which
are characteristic of lower dimensionality than three. Since a ome-dimensional
crystal displays a linear temperature behaviour in the specific heat, and since the
extra modes of Buchenau have been shown to be of harmonic nature, it seems
desirable to investigate the question whether one-dimensional defect structures in
higher-dimensional embeddings may produce a pronounced enhancement in the mode
density. This has led us t© choose an analytically tractable model system to study the
problem,

This paper is divided into six sections. Section 2 is a short synopsis of the
Green function formalism which is related to the original Lifshitz procedure [10-
12] and its extension to extrinsic degrees of freedom [19,20]. A comprehensive
presentation is found in an earlier paper by Wagner and Mougios [21]. The following
section describes the two-dimensional Montroli-Potts lattice which is our undisturbed
reference system and specifies the symmetry vectors of linear defect structures. In
section 4 detailed calculations of intrinsic defects are made whereas in section 5 the
effects of an extrinsic soft linear chain coupled to the bulk are discussed. A short
summary of our results is given in the last section and the possibility of czlculating
more complex structures is considered.

2. Preliminaries

21 Density of modes

We restrict ourselves to a specification of the basic Green function formulae which we
need to carry out the calcujations. A comprehensive representation of the formalism
is given in an earlier paper [21], and further background information is found in
books of Dederichs and Zeller [5], Bottger [2] and of Maradudin & &f [13]. We
consider a harmonic oscillatory system, characterized by the Hamiltonian
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where X, are mass-reduced Cartesian coordinates (X, = /M, =, ). Then the
eigenvectors n(k) = [n,,(x)] of the dynamical matrix U, constitute a2 complete
orthonormal set and may be employed to define normal coordinates [13]

=2 i (K) X @
ks
which diagonalize the Hamiltonian (1),
N
H=1% PPl +}Y 95Q.QL )
We introduce the Zubarev Green function (GF) [24]

G‘mn(E) - Z Ez 2 ﬂm(ﬂ')nn(ﬂ) (4)
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the imaginary part of which is related to the density of states
p(w) = 2w [G (W + i€) = Gy (w — i€)]

= —dwIm Z G (w + i€) for w>0. {5)

If an oscillatory system may be conceived as a deviation from an ‘undisturbed’ one,
the dynamics of which is known

H=H94+w ©6)
W=1% w,XnX, M

such that the ‘disturbance’ only embodies a small number of coordinates, we
may apply the Lifshitz formalism [10,11] to calculate the disturbed GF from the
undisturbed one,

G(E) = GO(E) + 2xGO( E)w[t - 272g @ (E)w] GO ( E). 8
g®(E) represents that part of the undisturbed GF G“(E) which pertains to
the ‘small space’ of the matrix w,,. From (5) and (8) we deduce, after some

manipulation, the deviation Ap(w) = p(w) — pl®(w) of the mode density from the
undisturbed expression,

Ap(w)=2Im T {w [l - 21rg(u)(E)w]_ldgw)(E)/dw} ©)

where E = w + ie and

Tr{X} = Xmm- (10)

For details we refer e.g. to the book of Dederichs and Zeller [5]. For ‘intrinsic’
disturbances, as given by expression (7), the effective disturbance matrix w,,,, does
not depend on w, whence expression (9) may be simplified to

Ap(w) = —(1/7)(d/dw) Im Tt {In [l - 2wg(°>(E)w]} an
and by means of Tr{ln X} = In{detX} finally to

Ap(w) = ~(1/7)(d/dw)Im In {det [l — 2rg(E)w] } - 12)
In a very similar manner we may also handie problems, in which the original reference
system, characterized by the Hamiltonian H("), is supplemented by additional degrees
of freedom. In this case the Lifshitz procedure has to be modified somewhat [19].

‘We now write the Hamiltonian in the form

H=H® 4 @ 4 gte) (13)
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where
HO=1N"PL+ 13 %, U8 X, (32}
HO=13"P2+ 13 X, U9X, (135)
rs

HOO = 13 (X Ko X 4 X, Ko X)) Koy = Ko (130)

and we introduce the convention that the indices {m,n} are always confined to
the ‘intrinsic’ degrees of freedom whereas {r,s} pertain to the ‘extrinsic’ ones. We
introduce the ‘intrinsic’ and ‘extrinsic’ GFs respectively as

G(B) = (1/27) (EHO ~u®) (14)
GE(E) = (1/27) (EZI("’ ~ U‘“’): (14b)

where 1, 1(9) are the unit matrices in the two subspaces respectively. It should be
noted that the matrix elements defined in (F4a,b) are not those of the true GF in the
two subspaces,

Gma(E) # GR(E) G (E)# G(E). (15)
Defining the decomposition

URr = USRS + wll, (16)
it is found (see [21]) that an effective intrinsic disturbance may be introduced,

WD = v, + 27 Y] K, GE) K, a7
such that again the GF pertaining to the intrinsic degrees of freedom may be written
in the Lifshitz form (8)

Gma(E) = GQJ(E)
. . : -1
+ 27 {G(U")(E)w(e&) [I{L) _ ZWg(o“)(E)W(Em] G(U,:}( E)} (18)

mn

where

GON(E) = (1/2x) (Ezlm - u(“’i))_1 . (19)

mmn

The extrinsic elements G_,(E) of the true GF are found as

Gra(Ey = (1/27) { B - [U© + 27K GO(E) K| };1 20)
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where G ( E) is defined in (14a) and, in view of the decomposition (16) the intrinsic
GF GO( £} may also be written in the Lifshitz form (8)
GQ,.(E) = G E)
. . -1
+2x {G("")(E)w(‘) [0 gwg(ﬂ,l)(E)wfl‘)} G(“’Q(E)} . @n

mn

The total mode density is given by means of
p(w) = p®(w) + AN (w) + pH(w) (22)

where p(®)(w) stands for the undisturbed intrinsic density and

ApO(w) = —4w ki Y G (E) ~ GRA(E)

-1dg®I(E)
dwr

=2Im Tt {w(eﬂ')(E) Il(i) - 2,rg(u,i}(g)w(=ﬁ)(_g)]
(23)
PNw) = —doim 3 G,.(E) 24

22 Collective disturbance coordinates

The small ‘space’ of coordinates which characterizes the deviation of the disturbed
Hamiltonian H from the undisturbed reference Hamiltonian H(®) does not necessarily
invoive only a small number of Cariesian coordinates. Rather we assume that it is
small in the sense that it can be described by a small number T' of generalized
orthonormal coordinates {S(+}},

S =Y o X,  vy=12...,T 25)
N
Z cm(ﬂf)* am('f!) ,= 677‘ (26)

such that the disturbance (7) displays the form
r
W =13 %, S(7)"5(¥) @7
ued

where W is the projection of the disturbance matrix w onto the vector set {o,,{7),
v=1,...T'},

'{E‘Y‘T' = zam('f }* Wrmn on(ﬂf’)' (28)
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We emphasize that the number of Cartesian coordinates involved may be much larger
than the number I" of effective ‘disturbance coordinates” S(v). In a similar manner
the GF G ( E) may be projected onto this set [21],

N N
= 1 1
OB =5 e (Z Im(1)° ns,‘P(n)) (2 P (k)" a,,w)) 29
K K m n
The Lifshitz expression (8) then can be shown to reduce t0 the form
- - = -I.
G(E) = EO(E) + 2rGO(E)W [l -2 gO(Byi| GOE)  (30)

where

BB =3 0n() s E) o (4. (1)

The deviation A p(w) of the intrinsic mode density (12) from the undisturbed value
now reads

Ap(w) = —(1/7) (d/dw) Im In {det [T—zwg(ﬂl(s)w]}. (32)

In the case of extrinsic disturbances we aiso may introduce appropriate collective
coordinates for the extrinsic degrees of freedom { X, (e)}, as shown in section 5. For
further details about the derivation of the preceding formulae we refer to an earlier

paper [21].

3. Linear defect structures embedded in the two-dimensional Montroll-Potts lattice

3.1. Moniroll-Ports lattice

This lattice is useful in model calculations and was introduced by Montroll and Potts
[14-16]. In the MPL only nearest-neighbour interaction is taken account of and is
described by longitudinal and transversal spring constants f. The Hamiltonian reads

f - 2
HO =13 P+ 37220 Koo = Xom ) (33)
m. L ™m,u §
where m = m.,e, + mye,; m,,m, = 0,£1,... £ N/2. e_,e, are Cartesian

unit vectors and 6 = te,,xe,. The mndex g covers the space directions z,y. The
eigenvectors read

7D, (ky) = [AN + 1)) V2 e*m 5, (34)
with eigenfrequencies
QO (k,, ky, A) = 10f {1 - }(cos &, + cos k) = Q90,2+ 0Ok, (39
Qb =8f/M  QO(k,)? = 4(5/M)sin® (k,/2)
QO (k) = 4( £/ M)sin® (k, /2) (36)
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where A denotes the two frequency branches, (2 the Debye frequency, and

k,=[2=/(N+ D]n, n, =0,%1,...,xN/2 (37)
k,=[R2r/(N+1)]n, n, =0,%1,...,£N/2. (38)

The two frequency branches A are degenerate. A van Hove singularity occurs at
n‘uH = QD/ ﬁ‘

The undisturbed Green function for the MP Hamiltonian is of the form (see
equation (4))

gk (m—n)

11
0) =4
Craum(E) = 5 (N + 1) Zk: B2 ()2 e 39)

and the (undisturbed) mode density reads (see equation (35))
PO(w) = [B(N + 1)}/ r*0f] w K (11 - (5/2)?) (40)

with abbreviation

s =2-4(w/Qp) (41)
where
wf2 1
K = e — . 42
0= [ s “

0

For Jow frequencies we find

PO(w) = [4(N + 12/ 70p] {1+ (/D) }w/Qp @< Op. (43)

3.2, Intrinsic defect arrays and symmetry vectors

We consider defect lines along the x-axis, such that translational invariance i
not broken in this direction, whereas it is broken in the y-direction. By way
of this symmetry breaking the wavevector component k, remains a legitimate
characterization of the irreducible group representation, whereas k, does not.

We assume the spring constants to be disturbed in such a way that only =
displacements of a single or a few neighbouring chains are involved and that the
deviation from the ideal MPL is given by the Hamiltonian

W=y W “44)
B

| _ 2
Wi =—-of éjﬁg {er,m{u - sz-!-ﬂsm:""s{'} @)

o =(f-f)If. (46)
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In the examples given below the defect structure will always be chosen in such a way
that there is mirror symmetry in the y-direction, so that the index =, introduced in
equation (25) to characterize the degrees of freedom involved in the defect, may be
specified as

¥ —{kg,pyr) p=ug§ r=L...R,
where p is the parity with regard to reflection symmetry in the y-direction, and »

is the multiplicity index of the respective representation. The vectors o,,(v) (see
equation (25)) then may be written in a factorized form, -

Crm,m,,,x = dm,(kz) G‘m”(p,'r') (47)

Tmpmyy = 0. (48)

We use the definition
O, (k) = (1/V/'N + 1) e¥=m= (49

where k, is defined in (37). Inserting expressions (47) and (49) in equation (28) with
substitutions m — m,,, v — {k,,p,r} we find from (45)

ﬁrr;(kx,p) = —-ﬂiff Z o’ [eiéiksa-m_;+6£(p, r)— am_;(p, T‘)]
¥
x [0, 0 (07) — 0, (5,7 (50)
and the corresponding projected GF (31) in the ‘smail’ space is given by

} (Pﬂ‘) ekvmy} (e=Fvmy o, (p, 1)
gs'[:')'(kzvpaE) N-I-l Z ( Q()D)((kx,k‘y)z ) 6L

"':f ":v

which may be written as

Gk mEY= Y on (1) GO, (B o, (p,7) (52)
where
o) ( ) z aify(my=ny) - GO (E’) s3
TMyTy 271- N + 1 Q(”)(ky)?- = Maymy ( )
E* = EF — Ok ) E=w+ie 54

and where Q@ (k, )%, 2O (k_)? are given by equation (36). In view of equations (50)
and (51) we note that the effective rank of the computational problem is given by
the multiplicity R, of the coordinates pertaining to a given parity p. We further
observe that the only GF invoived in our calculation will be that of the linear chain
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(see equation (53)). This GF has been studied intensively by many workers [13,22].
Specifically one finds

x

) E = i 1 ! = - - ./ :
G (E) 2x N+1 2 E? — QO (k,)? 204 dky s —ie—cosk,
0

ky
5 1/vVs2—1 for s< -1
= <, —ifv/1— 52 for-1<s<1 (55a)
—-1/v/s? -1 for s>1
where
s=2—4(w/Qp) — cos k. (56)

For our calculations we also need the equations

) 1+s/Vs2—1  for s<—1
Ggg)(E)=m!2; 1—isfv/i— 2 for -1<s <1 (55p)
I—SIM for s>1
254+ (252 - 1)/Vsi—1  for s<—1
2s+i(1-25)/V1-s2 for-1<s<1 . (55¢)

25— (252 - 1) /52 -1 for s>1
Employing (47) and (48) we deduce from equation (32) the partial deviations
Ap(k,,p;w) from the undisturbed mode density,

Ap(k,, piw) = ~(1/) o= Im In det. [i - 2050k, 03 BNk, ) 67

and the total deviation reads

Ap(w) =" Aplk,,piw) = 3
»

ke.p

2
3

GH(B) = —
Tieh

TEL [ ak, Sots,piw): 69

It is practical in obtaiming an overview of the behaviour of Ap(k_, p;w) to discuss
also the fonction F(k,,p;w) given as

F(k,, i) = ~(1/x) Im In det [1- 2250k, , 53 EYi(k,,p)| (59
which by means of equation (57) is the ‘parental function’ of Ap(k,, p;w),

Ap(ky,piw) = (d/dw}F(k,, piw). (60)
For a given k_-value the band of undisturbed modes lies between the limits
Quin(k,) = 1Qp/1—cosk, (61)

Qe (k.) = 1Qp/3— oS E. (62)
Therefore, according to the theorem of Ledermann [9], the disturbed modes also lie
in this region with the exception of a few singular (i.e. ‘localized”) modes, the number
of which is pot larger than two times the rank of the effective disturbance. These
singular modes are found via the Lifshitz equation [10-12]

det [i— 270 (k_, p; E)w(k,,p)] =0 (63)
for w > Q. (k) or w < Qp (k).
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4. Examples

4.1. Longitudinal defect fine

We first consider the specific case where the longitudinal springs in the line m, =0
of a MPL are disturbed, as depicted in figure 1(a),

2
W= ezl > {Xeredr~ Xmusin} )

where

a=(f-f}f. (65)

Then the defect line itself is the mirrorline for the coordinates involved in the
disturbance, whence there is only parity p = g which has multiplicity R, = L
Therefore the ‘symmetry vector’ o, (p, ) introduced in (47) now reads

1 for my=0

r) = 66
crmv(g ) {0 otherwise ©6)
such that (see equations (50) etc.)

~ ~ . 2

(k) = Wy (k,,8) = —da(f /M) (sin Ik, ) (67)

g0k E) = g9 (k,, 8 E) = GL(E) ©8)

where GY)(E) is given by (55¢) and E2 = E? — QW(k_)?, E = w +ic. The
Lifshitz equation (63) yields a single localized mode which appears below the band
for a ‘soft’ disturbance, o > 0(f’ < f), and above the band for a ‘hard’ disturbance,
a<0(f > f):

Wige{kp) = ;-_QD\/Z — cos Ic,:l:\/l +o¥l—cosk,)?  for f'= f. (69)

The solution of this equation is shown in figure 2. Inserting equations (67) and (68)
i equation (57} we find

Ap(kyiw) = —(1/7Qp) (8a(l — cos k) z 5)

X {m [1—s?4+ a?(1- ooskx)z]}_l

— 38w — Qup (k)] = 38w — Qe (k) + 8 [ — wiee(kp)] (70)
where
z=w/Qp a=1-(f/f) s=2—4(w/Qp) —cosk,_. 71)

Figure 3 shows both the parental function F(k_;w) of Ap{k,;w) (see equations (59)
and (60)) and Ap(k.;w) itself. The global change of the mode density (58) is
depicted in figure 4. In this particular case study it does not display peculiar structural
features. For low frequencies it may be approximated by

Ap(w) = [2AN +1)/7p] a(w/Qp) @< ™)
and this has the same power-law behaviour in w as the undisturbed mode density.
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Figare 1. (@) Linear defect structure in the two-dimensiona) Montroll-Potls latlice
{f, M). The longitudinal spring constants along the z axis are changed to f'. (b) Linear
chain of transversal spring defects in the MpL. The coupling constants between the atoms
(mz,0) and (mz,1) are altered to f'. (¢} Fvo neighbouring chains of transversal
spring defects with modified spring constant f/ between atoms (mz,1),(m,0) and
{mx,0), (mz, -1} in the two-dimensional MPL. (d) Extrinsic linear chain (spring constant
fe, masses M) coupled to an intripsic chain of the MPL (f, M), Extrinsic atom at site
m. is coupled 1 intrinsic atom {mz,0) with transversal springs g in z direction.

06

0k

o

a.2f

%% n/2 | e
Figure 2. Localized bands due to a defect line of longitudinal springs in the two-
dimensional Montroll-Potts lattice. The full lines encase the continuum of band
frequencies. Dashed line: f/ = 0, dotted line: f' = 0.5 f, dashed-dotted line: f' =2 f.

4.2. Transversal defect line

We now consider the case of a defect line of the transversal springs between the
atoms m, = 0 and m, = 1 (see figure 1(b)), which initiates 2 defect Hamiltonian
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Figure 3. Change of the partial mode densily, Ap(ks;w), and parental function
F(kz;w) caused by the softening of the longitudinal springs for a representalive value
of k. (= m/3). Maximal disturbance o = ! « f' = 0 means springs are completely

000 005 [0 34] 0.15 020
x=w/

Figure 4. Low-frequency behaviour of the excess density of modes of the two-dimensional

Montroll-Potts lattice due to a defect line of longitudinal springs. Full line: f' =0,

dashed line: F/ = 0.5f, dotted line: F' =0.9f.

f Nf2 2
W=- 2M (X{m,,O) '"X(m,,l)) (73)

me=—Nf2

and « = (f — f')/f- Now the number of coordinates involved in the disturbance
is twice as large as in 4.1. There is a mirror line along the disturbed springs and
each pair of coordinates {X(,,, v, X(m, 1y} constitutes both an even and an odd
representation of the mirror-symmetry group (R, = I, R, = 1). Therefore we may
choose the symmetry vectors

0 otherwise
and
0 otherwise
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050

~{1/n)sImla( 1—2?:5”(!:.;1) #ke))

-075 =15

=100, . .
Q0 0.t 02 03 04 05 08 0.7 03

k=5/12 x=w/ 0

Figore 5. Change of the partial mode density, Ap(kz;w), and parental function
F(kz;w) due to a linear chain of softened transversal springs for a represeniative value
of k(= x/12). Disturbed spring constant f* = 0.1f.

Inserting these in (50} and (51) we immediately observe that the even-parity motion
(p = g) does not produce a change in mode density. We thus only have the odd-mode
contribution, for which we find the projections (see equations (50)—{52))

W(k,) = @y (k,,u) = —3a04 (76)
3O (k,; B) = 59 (k... w E) = G (E) - G (E) (7
or, using equations {55a) and (555)
1- m s< -1
27§ (k,; E) = ,_ﬁ‘% 1+iy/(1—s)/(1+s) ~1<s<1 (78)
1-/s-D/s+1D s> 1

where s is given by (56). In this case the Lifshitz equation (63) only yields a localized
mode for a ‘hard’ disturbance, ie. for « <0 (f' > f),

Wioe (k) = %QD\/Z —cosk, — (202 — 20 + 1) /(2cx — 1). (79)
Inserting equations (76) and (78) in equation (57) we have
1 a(l—a)z
Aplkziw) = V2rQp V1-s[(1 —-(cx)2 +)%az(1 - s)]
8w — wipe( k)] for a <0
— 16w — Qe k)] 4+ ¢ O for0< <1 (80)

%6 [w - Qmin(k:)] forx=1

where z,« and s are given in (71).

Figure 5 shows the behaviour of the partial mode density deviation (80) and its
parental function F(k_;w) (see definition (59)) for a ‘soft’ disturbance line, f* < f.
As physically expected the low frequency mode density increases, whereas at the
upper band edge there is a decrease. Nevertheless, also in this defect arrangement
the deviation of the global mode density (see definition (58)) does not display a
qualitative change in the power law of w: we still have Ap(w) ~ w, or more

specifically
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Figare 6. Low-frequency behaviour of the excess density of modes of the MpL due 1o
an intrinsic defect line of transversal springs. Dotted fine: f' =0, full line: f' = 0.1f,
dashed fine: f/ = 0.5f.

[2(N + 1) /7] [e/(1- a)lw/Qp  fora< 1

V2N + 1) /%0y fora=1. ®)

Ap(w) = {

The full behaviour of Ap(w) is shown in figure 6. It is worth noting that for small
a-values (Le. for f' — ) the prefactor of w in (81) turns very big and the power-law
behaviour even at low frequencies switches from Ap ~ w 10 Ap ~ constant, which
is indicative of one-dimensional harmonic dynamics.

4.3. Double transversal defect fine

The defect arrangement depicted in figure 1(c) is of particular interest, since it
partially separates a full chain of atoms from the surroundings. The Hamiltonian
alteration now reads

N/2
W=esty {(Xcm»m - X)) + (K = Xf’"m-”)z} e

me=—N/2

and & = (f —~ f')/f. The number of coordinates involved this time is 3(N + 1)
and there is a mirror line along the chain m, = 0 of atoms. Each tripiet of atoms
{X(ma,-1)r X(ms0)> X(m. 1)) constitutes respectively one odd-parity and two even-
parity representations of the mirror symmetry group. But one of the even-parity
representations is not effective in the dynamics, whence we have to consider only the
two Symmetry vectors

_x21v2 form, =21
O (1) = {0 for m’ 0 @3
1/V6 for m, = +1
m (81} = ¥ 84
om, (& 1) {—2/\/3 for m, =0 ®9
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which generate the projections (see equations (50)—(52))

(kg W) = By (kpy0) = ~jafth (85)
8 s+vs2—1 for s < -1
2W§fk¢,“;E)=-Q—% Ls+iV1-s? for-1<s<1 (86)
F—vVs—1 for s>1
and
{E(k::ﬁg) = ﬁll(k:r‘lg) = —%aﬂ% (87)

27k, 8 E) = —(8/3Q})
2—s+(s—I(s—-1)/(s+ 1) for s < -1
X{2—5—i{s—1}/(1=5)/(1+s) for-1<s<1 (88)
2—s+(s—D\/(s=1)/({s+1) for s > 1

where s is given by (56). The Lifshitz equation (63) yields the odd-parity localized
mode

2

o) =2 — 4 ({P(k,)/Qp) " - cos(k,) = (1 + a)/2a (89)

which only exists for &« < 0 (f' > f) and then appears above the quasi-continuous

band of modes (s < —1). There is also an even-parity localized mode for o« < 0
above the band

58 =2 - 4 (wB(k,)/2p)” - cos(k,)

= (1/4e) {Saz +2a-1+4 \/(30:2 +2a-1-8a(l —da+ 50:2)} .
(%0)

Inserting respectively equations (85) and (86) and equations (87) and (88) in
equation (57) we have

o) = — 8z oo — s)
Aplky, gw) = 70p V1— 52 [(1 - as)? + a?(1 - 52)]
6w — wip (k)] fore <0
+4¢0 for0<a<l (°1)
16w — Qpin(k)] fora=1
Aot = VT=s{[1-a~a(l-s)l+(1-a)1+s)}
Pz} = 7llp \/ﬁ.s‘{[l—a—a(lms)}z(l-l—s) + (1 —3)3}
6 [w = Wy (k, )] for a <0
— 361w = Qpyu (k)] + 4 0 for0<a<l (92

§lw—Qpa(k,)] fora=1
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Figare 7. Change of the partial even-mode density, Ap(kz,gw), and parental
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Figure 8. Same as fizure 7 but for odd-made density A p(kx, u;w) and parental function
Flkz,uw).

where z, o and s are given in (71).

Figures 7 and 8 show the behaviour of the partial mode density deviation (91) and
(92) and the respective parental function F(k.;w) (see definition (59)) for a ‘soft’
disturbance. Again, as physically expected, the low-frequency mode density increases
in both parity cases, but the effect is considerably more pronounced in the odd-parity
case (figure 8). For the global mode density (see definition (58)), as depicted in
figures 9 and 10, the very low-frequency behaviour is given by

N+1 4o w
7lp 1—a Qp

Ap(uw) =
N+1[\/§~Zi] fora=1
2p

fora< 1

'ﬂ'QD



Mode densities of defect lines in Montroll-Potts lattices 49

3
N+1 2o (_‘f_) for @ < 1
p

Ap(g;w) = ;i"l 1-a w < Op (94)
o
?s—.z—n—[z\/-—ﬁ;] fora=1

and for « # 1 neither parity case displays a reduction in the power of w against the
undisturbed mode density. However, as most distinctly seen in figure 10, for small
values of f there is a jumplike approach of A p(w) to a behaviour which is indicative
of a one-dimensional subdynamics.

)
£k

0g 0. 02 03 04 05 05

=/ T,
Figure 9. Low-frequency behaviour of the even-parity excess density of modes of two
neighbouring chains of transversal spring defects. Dotred line: f' = (, full Hne:
f' = 0.1F, dashed kine: f'=0.5f1.
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Figure 10, Same as figure 9 but for odd-parity modes.
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5. Extrinsic chain

We now consider an extrinsic harmonic chain of atoms (NN springs f,, masses M),
which is coupled to the inirinsic line of atoms {m_,m, = 0} by transversal springs
g, as fllustrated in figure 1(d). We decompose the total Hamiltonian in the form

H=H® 4 g€ 4 ghe HO = g 4w (95)

where H(® is given by equation (33). Since XK. ~ 6, . 5, ¢ which means that
atom number m, of the extrinsic chain is coupled to atom (m;,m, = 0) of the
MPL, we may replace the indices {r,s} in equations (13b,c) by {m_,n_} and write
for the several components of the Hamiltonian

NI2 Nj2

HO=1 Y PO*4 %-{T‘ > (x9 —x§§1+1)2
me=—N/2 € my=~N/2
Ni2 .
L Y X
€ mo=—Nf2
(36)
- Aar gl
2M ma=Nj2 ( )
( g Niz
Lhe) — _ {e)
B0 = Ty m;\vz X2 X0 5 (58)

X,(,f},,P,(,fﬂ denote the extrinsic coordinates and momenta. We introduce the intrinsic
symmetry vectors (see (47) and (43))

J(m,,m,)(kr.) = am,(kz) 6m,,0 am,(kz) = (1/ \4 N + l)eik,m: (99)
and the extrinsic ones

ol (k) = (YVN +1)e&=m =g (k,) (100)
which define the intrinsic symmetry coordinates (see equation (25))

S(k,) =Y 0r (k2) Xy (101)
and the extrinsic ones
Qulk) =Y o (k) X% Pk, =) 0 (k) PE. (102)

Mz My

These transmute the disturbances into the diagonalized form

N 9 »
wo = m‘éscm S(k,) (103)

; (COJE Qc(k,) S(k,)" (104)
i3
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and also diagonalize the extrinsic Hamiltonian

HO = 13 [Pk,) Bulky)! + 296 Qulk,) Qulk,)T]  (105)
ka

where
QO(k,)? = Q) (k) + g/ M, (1062)
QO (k, )2 = 4(f./M.)sin® (K [2) (106b)

The extrinsic GF then reads (see (146) and (4))
1 1
(e) —_E:_____ (& (l yol® *
Gonern (E) = 27 Y E2 - Qled(k, )2 oma(k) on (ko) (109

by means of which, exploiting equation (17), the effective projected intrinsic
disturbance is found to be

Tk By = Y o, (k) wlh, o, (k)

= (g/M}[E? - QOO (k /[ E? - Q¥ (k)]
= LaQB[(E/Qp)? - LBusin®(k,/2)]/
[(E/Qp) - LBusin®(k,/2) ~ au/8] (108)
with abbreviations:
a=gff B=ftf p= MM, QL =8f/M. (109)

Inserting equation (108) in (23) we find for the alteration of the intrinsic mode density

20 (w) = 3 2D (k,5w0) (110)
ke

ApD (ke sw) = 2Im&D (k,; E) {1 — 22§00 (k5 EYGCP (& E)] -
dg®d(k,; E)
des
=2(g/M)Im ({[E? - Q09 (k,)?)(d/dw)g®D (k3 E) }
x {187 - 2090, [1 - 200/ M50 (ks B)] - 0/} )
(111)

X

where %Nk ; E) = §Y(k_;E) is given by equation (68). For the modified
extrinsic mode density (see (23)) we may wriie

pOw) = T ok 500)
k:

P kyiw) = ~dwIm Go(k,; E) (112)
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where G,(k_; E) follows from the projection of equation (20)

~ 1 .
Ge(kz;E) = 2_7‘_ z am,(kz)

My, Ry

x {Ezl(") - [u@ + 27 KGO(E) K]}_l _an (k)

= (1/27) { B - |09k, P 4 2n(a MM IO (ks B}y
From the projection of (21) we get
§0(k,; B) = g% (k. E)
x [+ rg/an) (3 - 200/ )50 ks B) 50, )|
= 5O (kz; B)/[1 - 2m(9/M)FOD k,; E) (14)
which we insert in (113)
G (k3 E) = (1/2) [E? - QW (k,)? - 2n(g? /M M,)§O k. E)
x (1= 2n(g /M) (ks BN
= (1/2m)[t - 2m(g /M5 (k,; E)]
x {1E? ~ 209 (k, YI[1 - 20(9/M)3® (ks E)] — o/ M.} - (115)

This yields for p'9(k,;w), if inserted in (112)
P kyi0) = ~(2f ) I (1 = 2a(9/ M) (k3 E))
{18 - 2091 - 20305 s BN ~ /M) |- 19

Considering equations (111} and (116) we observe that they display the same
denominator. In point of fact we may combine the two formulae to give the single
equation

ApO (ke 30) + pl9(ky3w) = Ap(kgiw)
=~ (1/7) (4/dw)Im In {(E? ~ Ok, )?)

x (1=-2x(g/M)g®P (k.3 E)) — (9/M,)} (117)

where Ap(k,;w)} is t0 be understood as the deviation of the mode density from
that of the ideal intrinsic MPL. In this manner we have also succeeded in expressing
the solution of the extrinsic coupling problem by means of a parental function (see
equation (12)).
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Again singular ‘localized’ modes occur outside the intrinsic band, which we found
by searching the real poles of equation (115},

(w? - 2@9(k,)?) (1-2m(g/ M) (k,30)) = (9/M,) = 0. (118)
Inserting equation (68) for 2rg(®)(k_;w) = 27§ W (k_;w) we finally arrive at
AP (ke sw) + PO (ksw) = Aplk,;w)

(1/700) fotpz(l -~ s%) + 16aws {22 — 20(k, )7 [2? — =((&,)7]

= K
PVITF [a2 (o7 - 2O (k)2) + 41 - 52 (22 — 2O (k,)2) ]

— 360w = Qup (k)] = $6 [ = Qpay (k)] + 8 [w — wiga (k,)]

{+6[w — e (k)] (119)
where « = w Q. The carved brackets around the é function of the second localized
mode are a reminder of the fact, that this mode only exists if the frequency of the
extrinsic chain for & is not degenerate in the band modes. Figure 11 shows the bands
of localized modes due to a soft extrinsic chain for several coupling strengths. Soft
in this case means that for all values of k_ the frequency of the chain is below the
continuum of the undisturbed MPL. The partial change of the mode density Ap(k,;w)

and its parental function F(k_,w) are depicted in figure 12 for an extrinsic chain
with spring constant f, = 0.5f and masses M, = M.

x=u/

[/}
Q n/2 "

Figure 11. Location of the singular bands due o a soft extrinsic linear chain (f; = 0.5 f,
M. = M} coupled by g to the two-dimensional Montroli~Potts [attice. The full lines
indicate the edges of the continuum of band frequencies and the dispersion curve of the
free extrinsic chain. Dashed lines: ¢ = 0.1f dotted lines: ¢ = 0.5f, dashed-dotted line:
g — oo,

The global change Ap(ws) which is given by definition (58) again shows a linear
dependence in the very low-frequency region
Ap(w) = (N + D/Qpl[A2 - Bu)/7a] (@/0p) @< Qp. (120)
The total behaviour of Ap(w) is displayed in figure 13 for several coupling constants
g and in figure 14 for several external masses M,. Although for very low frequencies
the change of the mode density is given by equation (120}, we see that there is 2

iransition to one-dimensional behaviour (Ap(w) ~ constant) which is shifted to very
low frequencies with decreasing coupling constant g (or increasing masses M,).
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Figure 12. Change of the partial mode density, & p(ky;w), and parental function
F(kz;w) due 10 a soft extrinsic chain (fe = 0.5 f, M. = M) for a2 representative
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Figure 13. Low-frequency behaviour of the excess density of modes of the two-
dimensional Montroll-Potts laitice due to an extrinsic linear chain (fo = f, M. = M)
for several coupling strengths. Full line: ¢ = 0.5f, dashed line: g = 0.1f, dotied line:
g = 0.05F, dashed-dotted line: g = 0.01f.

6. Summary and further perspectives

The present investigation addresses the problem to what extent linear defect
structures in crystalline systems are able two affect the low-frequency power law of
the vibrational mode density. This question seems suggestive, since purely one-
dimensional vibrational systems exhibit a constant mode denmsity at w — 0, and thus
the low-temperature specific heat would increase linearly with 7. Glassy systems
(8i0,, GeO,) also display such a behaviour, although it is not clear whether one-
dimensional substructures in the material are responsible for it. For these systems
there is also meutron scatiering evidence that the low-frequency mode density is
strongly increased. Inspired by these findings we have calculated in detail the effects
of linear defect structures softly embedded in a two-dimensional lattice.

A Green function formalism is presented which is a kind of generalization of the

original Lifshitz formalism. 'Whereas the Lifshitz procedure is restricted to a few
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Figure 14. Low frequency behaviour of the excess density of modes of the two-

dimensional Montroli-Potis lattice due to an exirinsic linear chain (fe = f) coupled

with springs g = 0.1f to the MPL. Full line: M. = 0.1M, dashed line: M. = 0.5M,

dotted line: M. = 2.034, dashed—dotted line: M. = 5.0\

Cartesian disturbance coordinates, in our calculation new ‘mesoscopic’ coordinates
and a new orthonormal basjs are introduced in such a way that only a few of these
mesoscopic coordinates are involved in the disturbance. By means of group theory
the problems are reduced to low-rank subproblems. The formalism is extended to
cases in which foreign degrees of freedom are coupled to the lattice.

Archetypical models of line defects with translational symmetry in z-direction
in the two-dimensional Montroli-Potts lattice (MPL) are discussed. For soft defects
(f* < f) it is found that all these structures generate 2 mode density, Ap(w) ~ w,
in the very-low-frequency region which equals the power law of the reference system
(MPL). However, as most clearly seen in the last two examples, there are new features.
If there exists a softly coupled linear chain which may be intrinsic (by softening of
transversal springs to neighbouring chains) or extrinsic (coupling with springs g to a
chain of the MPL), a transition of the additional density to one-dimensional behaviour,
Apl(w) ~ constant, takes place. The frequency at which this transition occurs is
shifted to Jower and lower frequencies as the coupling becomes softer.

We have not presented similar calculations for linear defect embeddings in three-
dimensionai lattices, although our formalism also applies there. These calculations
require much more numerical effort and will be given later. Also the case of softly
embedded librational chains will be given elsewhere. This latter case is of particular
interest, since it represents a simulation of modes which are suggested by neutron
scattering experiments [3]. A highly desirable future extension of the present work is
the investigation of thermal transport properties in the presence of one-dimensional
defect structures, since from such investigations one may expect new insight with
respect to the measured particular features in glassy material.
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